26 February 2020
LeetCode(101) -- 144, 146, 147, 148
by Jerry Zhang
P144. Binary Tree Preorder Traversal (Medium)
Given a binary tree, return the preorder traversal of its nodes’ values.
My Solution
Given a binary tree, return the preorder traversal of its nodes’ values.
class Solution {
public List<Integer> preorderTraversal(TreeNode root) {
List<Integer> ans = new ArrayList<>();
preorder(root, ans);
return ans;
}
private void preorder(TreeNode node, List<Integer> ans) {
if (node == null) {
return;
}
ans.add(node.val);
preorder(node.left, ans);
preorder(node.right, ans);
}
}
100%
P146. LRU Cache (Medium)
Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get and put.
get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1. put(key, value) - Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item.
The cache is initialized with a positive capacity.
Follow up: Could you do both operations in O(1) time complexity?
Solution
public class LRUCache {
class DLinkedNode {
int key;
int value;
DLinkedNode prev;
DLinkedNode next;
}
private void addNode(DLinkedNode node) {
/**
* Always add the new node right after head.
*/
node.prev = head;
node.next = head.next;
head.next.prev = node;
head.next = node;
}
private void removeNode(DLinkedNode node){
/**
* Remove an existing node from the linked list.
*/
DLinkedNode prev = node.prev;
DLinkedNode next = node.next;
prev.next = next;
next.prev = prev;
}
private void moveToHead(DLinkedNode node){
/**
* Move certain node in between to the head.
*/
removeNode(node);
addNode(node);
}
private DLinkedNode popTail() {
/**
* Pop the current tail.
*/
DLinkedNode res = tail.prev;
removeNode(res);
return res;
}
private Map<Integer, DLinkedNode> cache = new HashMap<>();
private int size;
private int capacity;
private DLinkedNode head, tail;
public LRUCache(int capacity) {
this.size = 0;
this.capacity = capacity;
head = new DLinkedNode();
// head.prev = null;
tail = new DLinkedNode();
// tail.next = null;
head.next = tail;
tail.prev = head;
}
public int get(int key) {
DLinkedNode node = cache.get(key);
if (node == null) return -1;
// move the accessed node to the head;
moveToHead(node);
return node.value;
}
public void put(int key, int value) {
DLinkedNode node = cache.get(key);
if(node == null) {
DLinkedNode newNode = new DLinkedNode();
newNode.key = key;
newNode.value = value;
cache.put(key, newNode);
addNode(newNode);
++size;
if(size > capacity) {
// pop the tail
DLinkedNode tail = popTail();
cache.remove(tail.key);
--size;
}
} else {
// update the value.
node.value = value;
moveToHead(node);
}
}
}
P147. Insertion Sort List (Medium)
Sort a linked list using insertion sort.
My Solution
class Solution {
public ListNode insertionSortList(ListNode head) {
if (head == null || head.next == null) {
return head;
}
ListNode dummy = new ListNode(0);
dummy.next = head;
ListNode curr = head;
while (curr.next != null) {
int val = curr.next.val;
ListNode insertionCurr = dummy;
while (insertionCurr.next != null && insertionCurr.next.val < val) {
insertionCurr = insertionCurr.next;
}
if (insertionCurr == curr) {
curr = curr.next;
} else {
ListNode node = curr.next;
curr.next = node.next;
ListNode next = insertionCurr.next;
insertionCurr.next = node;
node.next = next;
}
}
return dummy.next;
}
}
66%
The Best Solution
class Solution {
public ListNode insertionSortList(ListNode head) {
if (head == null || head.next == null) {
return head;
}
ListNode slow = head;
ListNode fast = head.next;
while (fast.next != null && fast.next.next != null) {
fast = fast.next.next;
slow = slow.next;
}
ListNode mid = slow.next;
slow.next = null;
return merge(insertionSortList(head), insertionSortList(mid));
}
ListNode merge(ListNode n1, ListNode n2) {
ListNode dummy = new ListNode(0);
ListNode pre = dummy;
while (n1 != null && n2 != null) {
if (n1.val > n2.val) {
ListNode tmp = n1;
n1 = n2;
n2 = tmp;
}
pre.next = n1;
n1 = n1.next;
pre = pre.next;
}
pre.next = n1 != null ? n1 : n2;
return dummy.next;
}
}
这明明是merge sort,不是insertion sort
class Solution {
public ListNode insertionSortList(ListNode head) {
ListNode dummy=new ListNode(Integer.MIN_VALUE);
dummy.next=head;//错误点
ListNode cur=dummy;
while(cur.next!=null){
if(cur.val<=cur.next.val){
cur=cur.next;//错误点,否则无限循环
continue;
}
ListNode n=cur.next;
cur.next=cur.next.next;
ListNode icur=dummy;
while(icur.next.val<n.val) icur=icur.next;
n.next=icur.next;
icur.next=n;
//cur=cur.next;//错误点 4->2->1->3 把2移到4的前面之后就不用cur=cur.next
}
return dummy.next;
}
}
98% 思路跟我差不多,但简洁很多,也快很多。学习这个。
P148. Sort List (Medium)
Sort a linked list in O(n log n) time using constant space complexity.
Solution
class Solution {
public ListNode sortList(ListNode head) {
if (head == null || head.next == null) {
return head;
}
ListNode slow = head;
ListNode fast = head.next;
while (fast != null && fast.next != null) {
fast = fast.next.next;
slow = slow.next;
}
ListNode mid = slow.next;
slow.next = null;
return merge(sortList(head), sortList(mid));
}
private ListNode merge(ListNode n1, ListNode n2) {
ListNode dummy = new ListNode(0);
ListNode pre = dummy;
while (n1 != null && n2 != null) {
if (n1.val > n2.val) {
ListNode tmp = n1;
n1 = n2;
n2 = tmp;
}
pre.next = n1;
n1 = n1.next;
pre = pre.next;
}
pre.next = n1 != null ? n1 : n2;
return dummy.next;
}
}
97%
tags: LeetCode